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Abstract— In this paper we investigate the achievable rate of
a system that includes a nomadic transmitter with a Gaussian
codebook and several antennas, which is received by multiple
agents, each with a single antenna, suffering independent channel
gains and additive Gaussian noise. In the nomadic regime, we
assume that the agents do not have any decoding ability. These
agents process their channel observations and forward it to the
final destination through lossless links with fixed capacities. This
paper extends a previous work [1] by providing new upper
bounds on the achievable rates, and demonstrates optimality of
the suggested coding scheme in several asymptotic situations. For
a finite 2× 2 setting and Rayleigh fading, the upper-bounds for
both fast and block fading are demonstrated.

I. INTRODUCTION

In this paper we extend on previous results [1] on a network
setting in which a nomadic transmitter has several antennas
and is communicating to a remote destination, where no direct
link exists between the transmitter and the final destination.
The final destination receives all of its inputs from several
separated agents, which are connected to it through fixed
lossless links, each with a given capacity. The channel between
the transmitting antennas and the agents is either the ergodic
fast fading channel or the block fading channel, both with
independent fading. The channel state is known to the agents
and the final destination, but not to the transmitter. This
setting is closely related to the setting of the Multiple Input
Multiple Output (MIMO) channel, which is thoroughly treated
in the literature, see [2] and others. Since the transmitter
is nomadic, we assume that the agents do not possess the
codebook in use, and thus do not have any decoding ability
[3],[1]. In this paper we extend the upper bounds given in [1],
which bounded the average mutual information for the block
fading channel, to upper bounds also over the outage capacity
of the block fading channel, and the capacity of the fast
fading channel. The bounds, and the bounding technique are
related to the MIMO channel, the MIMO broadcast channel
[4] and to ad-hoc networks [5]. All these works deal with
situations where multiple antennas are transmitting and are
received in a distributed way, either by relays, destinations or
any combination of the above. The presented upper bounds
constitute another application of the entropy power inequality,
and were developed using ideas from [6], albeit in the vector
version.

This paper is organized as follows, in section II the setting
is described and the basic definitions and notations are given.

Section III briefly repeats the basic achievable results that were
reported in [1]. The new upper bounds are given in section
IV, divided into fast fading and block fading. The two bounds
are demonstrated in section V by some numeric example, to
be rather close to the achievable rate when using the Wyner-
Ziv (WZ) compression. Concluding remarks are then given in
section VI.

II. SETTING AND MODEL DEFINITION

We consider the same setting as [1]: a system with a
transmitter S which has t transmitting antennas and which
transmits during n channel uses. In each channel use,
the transmitter sends a vector X ∈ C[t×1] to the chan-
nel, where 1

n

∑n
k=1 E[X(k)∗X(k)] ≤ P 1. By restricting

E[X(k)X∗(k)] = Q to be diagonal, the setting is extended
also to include the sum rate of multi-user setting, where each
user has a single antenna. Such restriction would not limit
the achievable rate, as will become evident. The transmitter
uses Gaussian signalling, which enables explicit expressions
in the analytic solutions. The transmitter sends one out of
2nR messages, when R denotes the communication rate, using
one codebook, chosen at random out of an ensemble [3],
with codewords generated independently according to Xn ∼∏n

PX(k), where PX(k) = N (0, Q). The rate R is said to
be achievable, if the error probability can be made as small
as desired, by increasing n. In addition, we have r agents
A1, . . . , Ar, each receiving the scalar channel outputs:

Yi(k) = hi(k)X(k)+Ni(k), i = 1, . . . , r, k = 1, . . . , n (1)

where hi(k) ∈ C[1×t] is the vector of the channel transfer
coefficients (CSI), which are either ergodic (fast fading) or
block fading, and distributed independently from each other,
and from any other variable, according to circularly symmetric
Gaussian distribution CN (0, 1)2. Define H , [h1, . . . , hr],
and Hn , {h1(k), . . . , hr(k)}n

k=1, where we will sometimes
drop the superscript n to avoid cumbersome expressions.
Similarly, Ni(k) ∼ CN (0, 1), and are independent of each
other and in time. For the sake of brevity, we drop the k
index from now on. The r agents are connected to a remote
destination with lossless links, each with capacity Ci bits per
channel use. The transmitter has no information regarding

1The statistical mean is denoted by E and ∗ denotes the transpose conjugate.
2NC(Ξ, Σ) stands for complex Gaussian random variable with mean Ξ

and covariance Σ.



    Agent
   A2

Agent
A1

Destination
D

C1

C2

Y1

Y2

X1

Transmitter

h22

h11

h12

h21

X2

S

Fig. 1. A system that includes a transmitter with t = 2 and two agents A1

and A2 (r = 2), connected to the final destination with capacities of C1 and
C2, respectively. The channel fading coefficients H are designated by {hi,j}.

Hn, while the final destination is fully informed about Hn.
By default, each agent has the full channel information Hn.
However, many of the presented schemes require each agent
to know only its own channel coefficients hi, as is stated in
the text. This setting is depicted in figure 1 for t=r=2.

The transmitter is nomadic [3], that is the selected codebook
that is used is unknown to the agents, but is fully known to
the final destination. Such setting is induced by assuming,
for example, random time varying codebooks, unknown to
the agents. Practical examples are wireless access points that
forward the reception without knowing the code used by the
transmitters. This way the agents treat input signals without
accounting for the coded transmission, in a multiple WZ
approach. In our previous contribution [1], mainly achievable
rates based on the WZ processing were presented, where
only the average mutual information of block fading channel
was bounded. This paper extends on [1] by providing upper
bounds to the achievable rate in fast fading and to the capacity
vs. outage for block fading. All the bounds assume that the
transmitter is limited to using only a Gaussian codebook.
Notice that the Gaussian codebook is not necessarily optimal,
(a counter example exists for the non fading case, where
using binary signaling at the transmitter with a simple two
level demapper at the agents can outperform the Gaussian
signaling scheme, see [3]). However, the Gaussian codebook
does provide a good candidate, as for Ci →∞ the Gaussian
codebook is indeed optimal. The Gaussian signaling used by
the transmitter results with the channel outputs being Gaussian,
for the nomadic setting. Notice that unlike traditional source
coding oriented problems that use the WZ technique, and
examine the resulting distortions, we focus on the communi-
cation rates. Thus any upper bounds or even optimality shown
for a source coding problem, although strongly connected, is
not identical to our problem. Apparently, the technique used
to show optimality of the distributed WZ with two terminals
problem ([7]) does not carry over to our setting.

III. ACHIEVABLE RATE FOR THE NOMADIC SETTING USING
WYNER-ZIV

For completeness of this paper, we first present here the
results regarding the achievable rates of the nomadic setting,
from [1][8], with the WZ compression. The achievable rate for
the fast fading channel is included, followed by the achievable
rate vs outage. The connection between the two is identical to
the connection in the MIMO channel.

For the fast fading channel, the achievable rate is [8]:

RWZ = EH

[
max

{0≤q′i}r
i=1

min
S⊆{1,...,r}

{ ∑

i∈SC

[Ci − q′i]+

log2 det
(

I|S| + diag
(

1
1 + PDi(q′i)

)

i∈S
HSQH∗

S

) }]
,

(2)

where HS = {hi}i∈S and PDi(q′i) is defined by

1
1 + PDi(q′i)

= 1− 2−q′i . (3)

Since (2) is concave in Q, and H is unknown to the transmitter,
but is symmetrically and independently distributed, Q = P

t It

is optimal.
This rate is achieved by using compression at the agents, and

then forwarding the compressed signals, using a WZ scheme,
to the final destination. We use compression such that the
quantization noise is of power PDj . Equation (3) provides
the connection between the power of the quantization noise
and q′i. One interpretation of q′i(k), from (3) is the bandwidth
wasted on the compression of the additive noise by the ith

agent’s processing.
Remark 1: For the non-ergodic block fading channel the

channel Hn is a static channel Hn = H . A channel H can
support reliable rate of

RWZ(H) = max
{0≤q′i}r

i=1

min
S⊆{1,...,r}

{ ∑

i∈SC

[Ci − q′i]+

log2 det
(

I|S| + diag
(

1
1 + PDi(q′i)

)

i∈S
HSQH∗

S

) }
. (4)

Because the transmitter does not have any CSI, it can not
transmit with rate RWZ(H). It can however use arbitrary rate,
and then with some probability, an outage event would happen.
So the achievable probability of outage when the rate is R is
calculated from (4) by:

P (RWZ(H) < R) , (5)

where the probability is with respect to the randomness of H .
Since this rate as function of outage-probability is not concave,
we need to optimize also for Q, as will become evident in
subsection IV-B. This is unlike the fast fading, where the
optimal Q is proportional to the identity matrix, due to the
concavity.

IV. UPPER BOUNDS

We first give an information theoretic upper bound for the
achievable rate, based on [3]. First, define Vi to be the message
sent from agent Ai after receiving n channel outputs. Notice
that Hn is fully known to all agents and to the final destination,
so they can use it to calculate the {Vi}.



For any subset S ⊆ {1, . . . , r}, the following inequalities
hold:

∑

i∈S
Ci ≥ 1

n
I(Y n

T ; VS |VSC ,Hn) (6)

=
1
n

I(Y n
T ; VT |Hn)− 1

n
I(Y n

T ; VSC |Hn) (7)

=
1
n

I(Y n
T , Xn; VT |Hn)− 1

n
I(Y n

T , Xn; VSC |Hn)(8)

=
1
n

I(Xn; VT |Hn)− 1
n

I(Xn; VSC |Hn) +

1
n

I(Y n
T ;VT |Xn, Hn)− 1

n
I(Y n

SC ; VSC |Xn, Hn) (9)

=
1
n

I(Xn; VT |Hn)− 1
n

I(Xn; VSC |Hn)

+
r∑

i=1

qi −
∑

i∈SC

qi (10)

=
1
n

I(Xn; VT |Hn)− 1
n

I(Xn; VSC |H) +
∑

i∈S
qi(11)

≥R(1− Pe)− 1
n
− 1

n
I(Xn; VSC |Hn) +

∑

i∈S
qi(12)

where (8) is because Vi is a function of Y n
i and Hn, so

we have the Markov chain Vi − {Yi,H
n} − X and (12)

is due to Fano’s inequality. Finally, qi is defined by qi ,
1
nI(Y n

i ; Vi|Xn, Hn).
Consequently, the achievable rate for reliable communication
is upper bounded by:

R ≤ min
S⊆{1,...,r}

{∑

i∈S
[Ci − qi] +

1
n

I(Xn; VSC |Hn) +
1
n

}
.

(13)
Note that the upper bound applies for the case where the
transmitter is nomadic, with Gaussian codebook, and the
agents can use any signal processing. So we upper bound the
rate by optimizing over the signal processing of the agents
(which is not necessarily Gaussian) and the covariance matrix
of the transmitter.

A. Upper bounding the rate for fast fading H

Lemma 1: If the transmitter is nomadic, so the agents have
no decoding ability, and the transmitter uses Gaussian code-
books, the following inequality holds for any S ⊆ {1, . . . , r}:

1
n

I(Xn; VS |Hn = θ) ≤

m log2

(
n∏

k=1

∣∣I|S| + ΛS(k)
∣∣ 1

nm −
n∏

k=1

|WS(k)| 1
nm

)
(14)

where ΛS(k) , HS(k)QH∗
S(k),

WS(k) ,
{

QHS(k)∗diag
(
2−qi(θ)

)
i∈S HS(k) |S| > t

diag
(
2−qi(θ)

)
i∈S HS(k)QHS(k)∗ |S| ≤ t,

(15)
qi(θ) , 1

nI(Y n
i ; Vi|Xn, Hn = θ) and m , min{t, |S|}.

The proof appears in [8] and is based on the entropy power
inequality, as done for the Gaussian CEO problem in [6]. Since
HQH∗ is distributed the same as HU∗QUH∗, when U is
unitary matrix, Q can be restricted to be diagonal in (14).

This upper bound is tight when the channel is H =
(1, . . . , 1)T , which is similar to the Gaussian CEO problem.
Observe that unlike the achievable rate, which is a concave
function of Q, so that Q ∝ I is optimal, the upper bound is
not concave in Q, thus we need to maximize the upper bound
also over Q such that Q ∈ P , where

P = {Q : Qi,j = 0 for i 6= j, Qi,i ≥ 0, trace(Q) ≤ P}.
(16)

Corollary 1: Note that in the limit of n → ∞, due to the
ergodic fading process:

lim
n→∞

1
n

I(Xn; VS |Hn = θ) ≤ F (S, qS), (17)

where

F (S, qS) , m log2

(
2

1
m EH1 log2 |I+ΛS | − 2

1
m EH1 log2 |WS |

)

(18)
and we use the notation qi , qi(θ) and qS , {qi}i∈S , and
ΛS = ΛS(1), WS = WS(1). Consequently, (17) can be
averaged over the channels:

lim
n→∞

1
n

I(Xn;VS |Hn) ≤ F (S, qS). (19)

The dependence of F from (18) on qi, stems from the defini-
tion of qi, as the bandwidth used for the noise compression,
and is essential for the bound, as it is used for connecting the
bandwidth for the signal compression to the achievable rate.
Using the upper bound from equation (13) with the corollary
above, the following upper bounds any achievable rate:

Proposition 1: The achievable rate of the nomadic trans-
mitter, with input covariance Q, which is received by agents
through fast fading channel is upper bounded by:

R ≤ max
Q∈P,{0≤qi≤Ci}

min
S⊆{1,...,r}

{
F (SC , qS) +

∑

i∈S
[Ci − qi]

}
.

(20)
Remark 2: When Ci = C for i = 1, . . . , r, since H is

identically distributed, then the argument which is maximized
over {qi}r

i=1 in (20), is symmetric in {qi}r
i=1. Since this

argument is also concave in {qi}r
i=1, for Ci = C, equation

(20) is maximized by qi = q∗. So that for the symmetric case:

R ≤ max
Q∈P,0≤q∗≤C

{
min

S⊆{1,...,r}

{
F (SC , q∗) + |S|[C − q∗]

}}
.

(21)
Following remark 2, we outline a special case where this
bound is tight.

Corollary 2: The WZ approach is optimal for infinite trans-
mission power, Q = P

t I , and Ci = C, i = 1, . . . , r.
Here we take P →∞, and fix t and r.
We justify it for r ≤ t, where basically the same holds also
for t < r. Taking P → ∞ and optimizing over qWZ (where



q′i = qWZ , i = 1, . . . , r in equation (2)) instead of over {q′i},
results with:

1
n

I(Xn; VS |Hn) = m log2(P ) + EH log2

∣∣∣∣
1
t
HSH∗

S

∣∣∣∣
+ mEH log2

(
1− 2−qW Z

)
+ o(P ), (22)

where o(P ) → 0 when P → ∞. On the other hand,
considering remark 2, we know that qi = qUB is optimal.
So we get

F (S, qUB) = m log2(P ) + EH1 log2

∣∣∣∣
1
t
HSH∗

S

∣∣∣∣
+ m log2

(
2o(P ) − 2−qUB

)
. (23)

which is identical, in the limit, to (22), justifying the corollary.
Since taking qWZ = qUB is optimal for P → ∞,

optimization over H , in (2) is superfluous. This means that
for large P , the WZ parameters are independent of H , which
in turns means that the i-th agent needs to know only its own
hi. The tightness, however, is maintained as long as Ci = C
for i = [1, . . . , r], where C can take any value. Observe that
the CSI (hi) is still required at ith agent, for the determination
of the codebook of U (see [3]).
The upper bound of proposition 1 is not tight because the
upper bound in lemma 1 was obtained using the vector version
of the entropy power inequality. This inequality is known to
be tight only for proportional covariance matrices, which is
not our case. Thus the entropy power inequality introduces
a gap that prevents the bound from being tight. This gap
can be mitigated by taking into account smaller matrices.
The following proposition improves upon proposition 1 by
optimizing over sub-matrices of S:

Proposition 2: The achievable rate of the nomadic trans-
mitter, with total power P , which is received by agents through
fast fading channel, is upper bounded by:

Ru , max
Q∈P,{0≤qi≤Ci}r

i=1

{
min

∪r
j=1Zj ⊆ {1, . . . , r},

i 6= j : Zj ∩ Zi = φ{
r∑

j=1

F (Zj , qZj ) +
∑

i∈∩r
j=1Zc

j

[Ci − qi]

}}
(24)

where F (Zj , qZj ) is defined as before, in equation (17).
The proof is very simple, considering for every group of
disjoint subsets ({Zj}r

j=1 : Zj ∩ Zi = φ when i 6= j) that
cover ∪r

j=1Zj = S we can write:

I(Xn; VS |Hn) ≤
r∑

j=1

I(Xn;VZj |Hn), (25)

which is due to the Markov chain Vj −X − Vi when i 6= j,
and then using the upper bound of proposition 1 again, for
every element.
For the symmetric case, where Ci = C for i = [1, . . . , r],
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fading Rayleigh channel, with outage probability of 10−2, where the upper
bound was calculated from (34). All as a function of SNR P in dB, where
the outage probability and the average over H were done by Monte Carlo
simulations over H .

due to the concavity of (24), the maximum in (24) is achieved
with qi = q∗, i = [1, . . . , r], so that (24) is written as:

Ru = max
Q ∈ P,
0 ≤ q∗ ≤ C

{
min∑r

j=1 jkj ≤ r,

kj ≥ 0{
r∑

j=1

kjF (j, q∗) + (r −
r∑

j=1

jKj)(C − q∗)

}}
. (26)

By solving the above optimization problem for {kj}r
j=1 and

then solving for q∗ by explicitly writing F (j, q∗) we can
simplify (26) to

Proposition 3: The achievable rate of nomadic transmitter
in the symmetric case, Ci = C, i = 1, . . . , r, is upper bounded
by

Rus , rC + r max
Q∈P

{
min

1≤j≤r

{
1
j
EHj log2 |Ij + HjQH∗

j |

− log2

(
2C + 2

1
j EHj

log2 |HjQH∗
j |

) }}
(27)

where Hj is the fading coefficients seen by any subset of j
agents (since the channel is ergodic, it does not matter which
subset).

The improvement over the bound from proposition 1, is seen
in the next corollary, where the inequality (25) is in fact an
equality, and a conclusive result is obtained.

Corollary 3: The WZ approach is optimal for Q = P
t I and

t →∞ while r is fix.
Since HQH∗ is proportional to the identity matrix (when t →
∞), the received signals are independent, which is equivalent
to r parallel links. Namely, when t →∞ while r is fixed we



get

lim
t→∞

1
t
HH∗ = Ir. (28)

So that the capacity is [9]:

lim
t→∞

R = max
{q′i}

{
min
S

{ ∑

i∈SC

[Ci − q′i] +
∑

i∈S
log2(1 + P (1− 2−q′i))

}}
. (29)

B. Block fading upper bound

In this subsection, we will consider the case of H distributed
independently, but once per block, such that Hn = H . The
achievable rate vs outage is given in remark 1. In the sequel
of this subsection, we will upper bound this rate, given some
permissible outage probability.
For the upper bound, we again use:

R(H = Θ) ≤ max
{qi}r

1

{
min
S

{
1
n

I(V n
S ;Xn|H = Θ) +

∑

i∈SC

[Ci − qi]

}}
. (30)

For I(V n
S ; Xn|H = Θ), we use the upper bound of lemma 1.

Since Hn = H , we get:

G(S, qS) , m log2

(∣∣I|S| + ΛS
∣∣ 1

m − |WS |
1
m

)
(31)

1
n

I(Xn; VS |H = Θ) ≤ G(S, qS) (32)

where ΛS = HSQH∗
S , as before and WS is defined by WS(1)

from equation (15). Combining (30) and (32) and noticing that
H is a random variable, we get the following proposition:

Proposition 4: An upper bound on the achievable rate R,
for given outage probability ε is the maximal R which fulfils:

P

(
max

{0≤qi≤Ci},Q∈P

{
min

S⊆{1,...,r}

{
G(S, qS)+

∑

i∈SC

[Ci−qi]

}}

< R

)
≤ ε. (33)

Actually, we can improve upon (33), the same way it was done
in proposition 2:

P

(
max

{0≤qi≤Ci},Q∈P

{
min

∪r
j=1Zj ⊆ {1, . . . , r},

i 6= j : Zj ∩ Zi = φ{
r∑

j=1

G(Zj , qZj ) +
∑

i∈∩r
j=1Zc

j

[Ci − qi]

}}
< R

)
≤ ε, (34)

but since the problem is not symmetric (due to the non-
ergodic H), we can not further simplify it, as in proposition
3. However, the limiting behavior of (28) is true also for the
block fading case. Thus the optimality of the WZ approach
when t →∞ is assured in the block fading case as well.

V. NUMERICAL EXAMPLE

The achievable rates and the upper bounds for both fast
fading and block fading channels, were calculated for a 2× 2
system, with C1 = C2 = 2, for several signal to noise ratios
(SNR, P in dB), and the results are presented in figure 2. For
the fast fading, the upper bound is obtained by averaging over
5000 channel realizations (the expectation over H in (27)).
It is seen there that the upper bound is convex, and that it is
close to the achievable rate, when using WZ compression. For
the low and high SNR, the bound is tighter, as expected.

For block fading channel, the upper bound from (34) is
depicted along with the achievable rate (5), for outage proba-
bility of ε = 10−2. The probability was calculated using Monte
Carlo simulations over H . It is seen there that the bound is
again very tight for the low SNR region, and the gap becomes
higher, with larger SNR, although it remains rather small, no
more than 1 dB throughout the figure.

VI. CONCLUSION

In this paper we upper bound the achievable rates in a
nomadic distributed MIMO system. We give upper bound for
both fast and block fading channels. The bounds are based
on the vector version of the entropy power inequality, and are
shown to be close to the optimal achievable rates, even for
rather small number of antennas (2× 2). The bounds are also
used to demonstrate optimality in two extreme cases, when
P →∞ and when t →∞.
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